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INTRODUCTION AND SUMMARY OF THE GIFFT METHOD 
A straightforward numerical analysis of large arrays of arbitrary contour (and possibly missing 
elements) requires large memory storage and long computation times.  Several techniques are 
currently under development to reduce this cost. One such technique is the GIFFT (Green’s 
function interpolation and FFT) method discussed here that belongs to the class of fast solvers for 
large structures. This method uses a modification of the standard AIM approach [1] that takes into 
account the reusability properties of matrices that arise from identical array elements.  If the array 
consists of planar conducting bodies, the array elements are meshed using standard subdomain 
basis functions, such as the RWG basis.  The Green’s function is then projected onto a sparse 
regular grid of separable interpolating polynomials.  This grid can then be used in a 2D or 3D FFT 
to accelerate the matrix-vector product used in an iterative solver [2].  The method has been 
proven to greatly reduce solve time by speeding up the matrix-vector product computation. The 
GIFFT approach also reduces fill time and memory requirements, since only the near element 
interactions need to be calculated exactly. The present work extends GIFFT to layered material 
Green’s functions and multiregion interactions via slots in ground planes. In addition, a 
preconditioner is implemented to greatly reduce the number of iterations required for a solution.  
The general scheme of the GIFFT method is reported in [2]; this contribution is limited to 
presenting new results for array antennas made of slot-excited patches and cavity-backed patch 
antennas.  
 
 

FEED REGION AND RADIATION REGION: DEFINITION OF  
INTERPOLATION DOMAIN 

The antenna structure is shown in Fig.1. In particular, the region above the ground plane may 
include a multilayered substrate with N conducting patches fed by a slot. Below the slot, the feed 
of each antenna is assumed not to interfere with the feed networks of other antennas. Mutual 
coupling between the patches and the slots is considered in the region above the ground plane.  
Therefore, the only approximation used in this approach is to neglect coupling between the 
microstrips and slots in the region below the lower ground plane. The multiport analysis obtained 
from this approach may be subsequently used as a multiport equivalent network for designing (or 
refining) the actual feeding network. Array scan blindness, grating lobe, and array edge effects are 
correctly taken into account since they are produced by the mutual coupling above the ground 

plane.  Voltage generators gV p
, with a generic double index, are defined on the 

microstrips below every slot (see Fig. 1a). The array is decomposed into blocks of elements with 
each element denoted by the two-component multi-index p ; a prime is added to distinguish 
source from observation element locations (

1 2( , )p p p=

1 2( , )p p′ ′ ′=p ).  Within each block representing an 
element, the electric and magnetic currents are expressed in terms of the usual basis functions.  For 
example, for the patch antennas in Fig.1 (a,b) the vanishing of the tangential electric field (EFIE) 
is imposed on every patch element and on the microstrip lines, while on the slots we impose 
continuity of both the electric and the magnetic field (MFIE). Electric current unknowns are 
defined on the conducting patches p

n
′⎡ ⎤Ι⎣ ⎦  and microstrip ( p

n
′⎡ ⎤Ι⎣ ⎦ ), while magnetic current 

unknowns  are placed on the slots, resulting in the system equation  p
nV ′⎡ ⎤⎣ ⎦
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(An analogous equation holds for the array of cavity-backed antennas.) The + or – superscripts 
denote operators for regions above or below the ground plane.  The matrix pp

mnZ ′ is the EFIE 
operator connecting blocks p  and p′ , and pp

mnY ′ is its dual, representing the magnetic field due to 
magnetic current sources; pp

mnβ ′ is the corresponding MFIE operator.  Subscripts m and n denote 
unknowns within the p and cells, respectively. The corresponding matrices ′p mnZ − , , and mnY −

mnβ −  
that appear on the diagonal blocks represent the coupling below the ground plane on?? each 
element; they affect only the p p′=  self blocks because the Kronecker delta  for , 1δ ′ =p p ′=p p ,  

and   for . Note that the number of subblocks in the first matrix in (1) grows as the 
square of the number of array elements while the second matrix is the same for all the array 
elements. In standard MoM, for large arrays the first matrix requires huge resources of memory, 
fill time, and solution time. The computational difficulty arises from the upper region because of 
the coupling between all the array elements. The numerical burden is reduced by applying the 
GIFFT method to this region.  

, 0δ ′ =p p ′≠p p

 
The GIFFT method begins by setting out a regular grid of Green’s function interpolation points 
across the entire array.  The points are typically chosen so there are five or six points per half-
wavelength array cell.  The points are used as equi-spaced interpolation nodes for Lagrange 
interpolating polynomials that approximate the Green’s function as    

,

( ) ( ) (L L′ ′

′

)′ ′− ≅ ∑ i i -i i

i i

G r r r G r  

where  are double indices representing interpolation point locations overlaying the observation 
and source cells, respectively.  Every necessary component of the various scalar and dyadic 
Green’s functions required for the problem is sampled for every separation of source and 
observation interpolation point.  It can be seen from the above that the Green’s function 
approximation is of convolutional form, and a matrix-vector product involving it may utilize an 
FFT.   After the Green’s function is sampled, the basis functions in the upper region (where 
coupling between array elements is assumed) are projected onto the interpolating polynomials.  A 
correction is performed for neighboring elements by computing the nine interactions of a cell with 
its neighbors exactly.  An iterative solver is then used that employs the FFT to perform the 
discrete convolution associated with the computation of matrix/vector products.  Because there 
exist several non-zero components of the Green’s function dyads for both electric and magnetic 
vector potentials, several multiplications must be carried out in the FFT domain, combining each 
vector component of the transformed currents with associated components of the dyadic Green’s 
functions. 

, ′i i

For the cavity-backed antenna the unknowns are placed on the various slots of the cavity (and thus 
not on the patch itself), and on the feeding microstrip below the slot (see Fig.1). A cavity Green’s 
function is used, accelerated with the Ewald method. 
 
When using an iterative solver such as BiCGStab on a very large matrix system, the solution may 
converge very slowly if conditioning is poor.  For this reason, a block diagonal preconditioner is 
implemented to improve the solution time.  The preconditioner used here simply inverts the self-
matrix block and uses this as a preconditioner.  Physically, this is equivalent to using the no-
coupling solution for a single array cell as the preconditioner, and has been found to be highly 
effective in practice.   



 
 

RESULTS 
Two test arrays are simulated with different structures and the results of the GIFFT method both 
with and without preconditioning are compared to an “exact” MoM solution of these arrays.  The 
“exact” solution does not use interpolation or fast multiplication, but utilizes an iterative solution 
(without preconditioning) and the Toeplitz nature of the matrices to speed fill time and storage.  
 
The first case considered is an array of 25 25×  square patches as shown in Fig.1, arranged on a 
rectangular lattice with periods 30[mm], and placed on a grounded dielectric substrate. The feed 
slot has dimensions 10  and is located 7[mm] off the center of the patch. The 
microstrip under the ground plane has width of 1.6[mm], and a length of 11.92[mm] that includes 
an open stub of length 11.67[mm]. Each patch, slot and microstrip is meshed using quadrilaterals, 
creating 128 unknowns per array element.  The GIFFT method uses fifth-order interpolating 
polynomials in both planar directions. Table 1 shows the run times for the standard MoM and 
GIFFT solutions of the two arrays. It can be clearly seen that the GIFFT method offers a dramatic 
savings in both setup and solve times.  It can also be seen that use of the preconditioner drastically 
reduces the number of BiCGstab iterations needed for a solution, further reducing solution time. 

[mm] 1[mm]×

 
Table 1: Matrix setup (fill) and solve times for GIFFT and standard MoM 

 
Setup 
Time Solve Time Number Iterations

25x25 array of patches
   MoM  w/ Toeplitz fill   ≈ 9 hr  ≈ 11 min 

per single BiCGstab 
iteration 

>100 
Program stopped earlier  

   FAIM w/ preconditioner ≈ 25 min ≈ 2 min (all 
iterations) 

8 

4x4 array of cavity-backed 
antennas    
   MoM  w/ Toeplitz fill ≈ 43 min ≈ 9 hr 13000 (BiCGstab err =5%) 
   GIFFT w/ preconditioner ≈ 13 min 20 s 24 

10x10 array of cavity-backed 
antennas    
   GIFFT w/ preconditioner ≈ 16 min ≈ 3 min  34 (BiCGstab err  = 1%) 

 
 
The GIFFT method also drastically reduces memory storage requirements.  For example, for the 

square patch array, each element is discretized using 625 25 25= × 128n = basis functions on the 
patch and the 38 on the slot and microstrip, requiring storage of 16,384 complex numbers for each 

 block  of the impedance matrix. Instead, using GIFFT with a fifth-order interpolation 
scheme, only 25 Green’s function samples per cell are stored.  For layered media, this number 
must be multiplied by the number of unique dyadic and scalar potential terms used in the mixed-
potential formulation.  The GIFFT storage advantage is further amplified by the fact that if there 
are M = 625 array elements in the square array, there are M

,p p′ pp
mnZ ′⎡⎣ ⎤⎦

2 = 390,625 matrix blocks in the 
complete matrix, which is why Toeplitz storage is used.  For the 25× 25 array, this means that the 
system matrix for a standard solution would contain about 

2117 117 M× × 916 16 5.3 10 M× × = ×+ complex entries (a Toeplitz implementation would 
reduce the number to ), while there are only entries in the 
sampled Green’s function array (the factor 4 accounting for padding to make the Green’s function 
sampling matrix circulant) in addition to near-interaction blocks [2]. 

71.7 10× 525 4 6 3.7 10M× × × = ×

   



The second example consists of an array of cavity-backed patch antennas, as shown in Fig. 1.  
Each patch antenna is suspended on a thin dielectric substrate layered on top of a cavity, which is 
in turn fed by a slot excited by a microstrip line with stubs. For each array element there are 276 
unknowns for a total of 27,600 unknowns. As can be seen in table, the GIFFT set up and solution 
times are reduced, even for this small 4×4 array antenna. After 13,000 BiCGstab iterations, the 
relative error of the MoM solution, without preconditioner, was still of the order of 1%-5%, while 
the GIFFT solution reached the target 10-4 relative error. The average error between the MoM and 
the GIFFT solutions, counting all the unknowns, is 3.8%, with the high error likely due to 
comparison with the non-converged MoM results.  
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Fig. 1. Two types of array elements: patch antennas, and cavity backed patch antennas. 
Lateral views (a), (c). Top views (b), (d). In both cases GIFFT may take into account a
multilayer environment. Each array element p is fed by an independent microstrip line 
excited by a V  voltage generator (here p=(pp

g 1, p2) denotes a double index). The array 
elements are coupled via the radiation region, i.e., the region above the lower ground plane.  
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